Anti-Symmetric Relation
- Tags
- math
A property of a relation \( R \subseteq A \times B \) where no pair of distinct elements of \( X = A \times B \) each of [see page 20, which] is related by \( R \) to the other.
\begin{align*}
\forall a \in A, b \in B ((a R b) \implies a = b) \
\forall a \in A, b \in B ((a R b) \land (a \neq b) \implies \neg (b R a))
\end{align*}