Implicit Differentiation
- Tags
- math
Is a form of differentiation targeting implicit functions.
For example consider the equation \( y^2 - 2x + \sin 3x = 16 \). Each of these can be differentiated independently, with any \( y \) terms also being multiplied by \( \frac{\,dy}{\,dx} \).
\begin{align*}
\frac{\,d}{\,dx} (y^2) &= 2y \frac{\,dy}{\,dx} \
\frac{\,d}{\,dx} (-2x) &= -2 \
\frac{\,d}{\,dx} (\sin 3x) &= 3 \cos 3x \
\frac{\,d}{\,dx} (16) &= 0
\end{align*}
From this we can re-arrange to find \( \frac{\,dy}{\,dx} \)
\begin{align*}
2y \frac{\,dy}{\,dx} - 2 + 3\cos 3x &= 0 \
\frac{\,dy}{\,dx} = \frac{2 - 3 \cos 3x}{2y}
\end{align*}